Posts tonen met het label Business Intelligence Architecture. Alle posts tonen
Posts tonen met het label Business Intelligence Architecture. Alle posts tonen

dinsdag 7 juli 2015

The Eternal Business Intelligence Conundrum

Finding an Optimum between a Manageable BI Architecture and Business Agility

This is the second post in a series of three about programme management in Business Intelligence (BI). In the previous post we positioned project- and programme management in BI and the latter’s relationship with BI architecture.
In this post, we discuss the universal and eternal problem, conflict, dialectics,… (call it what you want) between the business who wants a decision support solution here and now, no matter what the consequences for the IT department are and the IT guys who want to steer the team and the infrastructure into calm waters. “Calm waters” meaning a strict architectural, TOGAF based approach to managing the BI assets. 

Head for the Cloud!

I won’t describe the situations where the IT guys –according to the business- waste time with the introduction of new tools and the business strike a direct deal with a vendor, using the tool completely outside the managed environment. 
DataMaestro, for data mining in a browser
Figure 2 The data mining tool Data Maestro is an example of a powerful cloud based tool

Needless to say that many cloud based solutions offer a solution with a small IT footprint: all the business needs is a browser. Well, that’s what the business thinks. Issues like data quality, data governance and data security are not always handled according to corporate standards and legislation on data privacy and data security is becoming stricter and more repressive every so many years.

What Business Stakeholders Need

As I pointed out in the section “Managing Strategy” (Business Analysis for Business Intelligence p. 66 – 71) business stakeholders need decision support for their intended strategy as well as emergent strategies (note the plural in the latter). To support analysis and monitoring of intended strategies (i.e. the overall business plan or a functional strategy as described in a marketing-, HR- or finance plan for example) a balanced scorecard (BSC) does the job. If well done, a BSC aligns all parties concerned around a well-designed causal model breaking down strategic priorities into critical success factors and key performance indicators as well as a project plan, a data model and an impact study on the existing analytics architecture. But to capture, evaluate, monitor and measure the impact of emergent strategies is a different ball game. The business intelligence infrastructure needs an agile approach to produce insights on the fly. Some vendors will suggest that all can be solved with in-memory analytics. Others suggest the silver bullet is called “Self Service BI” (SSBI) Yet even the most powerful hard- and software is a blunt and ineffective weapon if the data architecture and the data quality are in shambles.
Sometimes new tools emerge, producing solutions for niches in finance, marketing or production management which cause the business to urge IT for adopting these tools. This ends with either a mega vendor acquiring the niche player or the niche player broadening its offerings and competing head on with the established vendors. In any case, if the IT department happens to have standardised on the “wrong” technology partner, there will be bridges to cross for both…
Other than issues with new software “interfering” with IT’s priorities, most of the troubles are found in the data architecture. The reason is simple: if not all BI projects are backed by an enterprise wide data architecture that is connected with BI programme management, new information stovepipes will emerge. This is quite ironic as the initial reason for data warehousing was to avoid the analytic stovepipes on transaction systems. So here’s my advice to the business:

Whatever business you are in, make sure you have an enterprise view on the major information objects for your analytic projects
Without it, you are destined to waste money on rework, on incomplete and even false information.

What IT Stakeholders Need

IT management has many constraints do deal with. Keeping up with business requirements, while getting the biggest bang for their buck means pooling skills, facilities and technology components to optimise license cost, education and training and hard- and software performance. The final objective is to provide high service levels and keeping their customers happy at a reasonable budget. But if ”happy customer” means: acquiring new, exotic software, training new skills and insourcing expensive tech consultants from the vendor to explore new terrain without experience or knowledge of best practices, then IT management may be at the short end of the stick.
Take the example of data visualisation ten years back. Business had a point that the existing vendors weren’t paying too much attention to good visualisation to produce better insights in data. Even the most common tools had problems creating a histogram, let alone sophisticated heat maps or network diagrams. Then came along vendors like Tableau Software selling end user desktop licenses at affordable rates, educating the business to enjoy the benefits of visual exploration of data. The next step in this “camel’s nose” or “puppy dog approach” is getting the organisation to acquire the server for better management, performance and enterprise wide benefits of the technology.
So here’s my advice for IT Management:

If a new technology becomes available, it will be used. Make sure it is used in a managed and governed way instead of contributing to information chaos.
Don’t fight business intelligence trends that have a pertinent business case, fight BI fads only.

A Governance Decision Model for Conflicting Interests

I don’t like dogmatic thinking in management but when it comes to governance in BI, I will defend this dogma till the bitter end: only duopolistic governance will produce the best results in analytics.

That a business monopoly won’t work was clear after a consulting mission where I found a data warehouse with no less than six (6!) time dimensions. This extreme situation can only be explained by what I call “the waiter business analysis model”. Without any discussion, counterarguments nor suggestions, the analyst-waiter brings the ordered tables, cubes and reports to please the business. If the business funds the projects solely, then accidents will happen.

Business Analysts need to interact with the business requirements
Figure 3 The BI Waiter Model: don't argue with the customer, bring him what he wants, no matter what...
But IT monopolies also are a recipe for failure in BI. At another client’s site, the IT department repeats over and over “x unless…” (x is a well-known BI tool provider). As it happens, this tool provider is lagging seriously in data mining and visualisation functionality so the business is wasting money on external service providers who do the analytics off line. Another source of waste are business managers installing software on their private PC to explore new ways of analytics at home.
In a duopolistic governance model, decision makers from both sides have to consider five key governance decisions. This will result in a better mutual understanding of each other’s concerns and priorities as well as provide a roadmap towards a managed analytical environment.

The Five Key BI Governance Decisions

(from my book Business Analysis for Business Intelligence, page 300 -301)

1.       BI Principles decisions:
a.       In what measure do we value data quality in the transaction systems?
b.      If we have a trade off between security issues and potential gains from better distribution of information, which direction do we choose?
c.       Do we choose a proactive or a reactive attitude towards our BI users, i.e. do we deliver only the required information or do we make suggestions for enhancements?
2.       BI Architecture decisions
a.       Do we follow the general architecture policies or is there a compelling reason to choose an alternative route?
b.      If we need alternatives, where will they be of importance: in databases, ETL tools, BI server(s), client software,…?
3.       BI infrastructure decisions
a.       What are the shared IT services the data warehouse will use?
b.       What part of the infrastructure will be organised per department or business unit?
c.      What are the access methods for the information consumers: local client PC, PDA, web based, VPN,…?
4.       Business Application needs
a.      Specify the business need
b.      Specify the urgency
c.      Present alternative solutions
5.       Prioritisation of investments in BI
  a.        How will we evaluate the priorities?
  b.        Who will handle conflicting interests?
  c.        Which user profiles will be served first?
  d.        Which subject areas will be tackled first?

Bert Brijs' book on Busines Intelligence governance, business analysis and project management
Figure 4 More on BI Governance in this book, available in all major bookstores

In the next post I will have a look into the next generation of information design and architecture. Comments are welcome!

maandag 29 juni 2015

Business Intelligence Programme Management: Optimising Time to Market with a Manageable Architecture

In this series of three posts, I will address some typical aspects of programme management for decision support. The first post will define programme and project management in Business Intelligence (BI) and its relationship with IT architecture.
The second post will deal with some issues in governance, the tensions that arise between business and IT and how to deal with them.

The third post will propose a new way of designing systems for both transaction  and decision support to improve the organisation’s effectiveness further.

A project holds the middle ground between routine and improvisation to produce a product

This is the essence of project management: managing unknown and unfamiliar risks and uncertainties using experience with proxies and lessons learnt to produce something within a time frame, a budget and within a certain quality range while delivering correct management information for the steering committee about the progress and the resources needed.
In Business Intelligence, this product orientation sometimes leads to overly focussing on the deliverables while ignoring valuable opportunities along the way. Many BI projects are described in terms of delivering x reports on y KPIs or delivering OLAP cubes and reports on x sources to describe what I call “stocks and flows” of business processes. I am not arguing against this approach but project steering committees should be aware that a tunnel vision can be a costly liability in BI.
Already in 1994, Séan Kelly (not the Irish cyclist nor the politician, but the datawarehouse manager from Eireann Telecom) stated that the business user can’t formulate correct requirements at the start of the BI project and changes these requirements during the project’s lifecycle. Twenty years later, many BI project teams haven’t learned anything from Kelly’s observation. Either they stick to the initial product description or they reiterate the analysis –design –build cycle at extra cost and throughput time. The major reasons are a lack of BI maturity in the organisation and the lack of an overall BI programme vision, at best an incomplete one.  In the next section I describe BI programme management and how this contributes to more effective BI projects.

Projects deliver products, programmes have outcomes

There is certainly some truth in this dictum on one condition: BI programme management should focus on favourable outcomes for decision making. The BI programmes can focus on improving decision making processes, on information objects like customer, product, channel or on broader outcomes like knowledge sharing, improved positioning, improved competitive capabilities etc.
The decision on the programme scope is not trivial. Sometimes programmes can define too broad an objective for the organisation’s maturity. Not everyone sees the relationship between a new column store and improved competitive positioning.
Some authors and practitioners see a BI programme as a collection of projects, a higher hierarchical level from tasks via projects to programmes. I strongly disagree. In my experience, BI programmes have links with other programmes on HR, IT infrastructure, marketing and sales, and other functional or strategic endeavours to produce a better outcome for the BI project portfolio.
The matrix below shows a few examples of how BI programme management interacts with other business programmes in the organisation.

Functional strategies and programmes
BI Programme interaction
Dependencies outside the BI programme
Marketing: improving customer knowledge
CRM and ERP systems deliver data to the customer analytics programme
The organisational question of customer ownership needs to be addressed when multiple divisions deal with the same customer.
Marketing: improving direct communication response rates
A customer MDM programme is initiated to improve data quality for BI and CRM processes
The customer logging processes,( e.g. in the contact centre) needs improvement initiatives
Finance: reducing days receivable outstanding
Within the customer analytics programme, a data mining project is initiated to predict payment behaviour
The invoicing process needs updating
HR: reducing absenteeism
HR and ERP systems deliver data about potential influencers on absenteeism as well as customer analytics to examine the impact of customer behaviour on absenteeism
The organisation’s management style needs adjustment for the new economy
Table 1 How BI Programmes interact with other business programmes

From these simple examples you can see clearly that the outcome of a BI programme affects other programmes and in its turn is affected by other programmes. In the case of BI projects we can also distinguish dependencies with other projects but these dependencies are usually smaller in scope and easier to manage in the steering committee.  You will probably recognize some of these quotes:
I can’t get the data from the HR department, it’s classified information,
They say I have to take the matter to the architecture board,
The infrastructure needs upgrading,
The license negotiations are slowing down the project, etc…
Now that the link with external programmes is clear it is high time to look what is inside a BI programme. This is where the link with architecture becomes clear.
BI programmes should have an overarching view, vision, business case and target setting for the principal contributors to better decision making.
In Kimball terms: the conformed dimensions, in Linstedt terms: the data vault’s hubs and satellites. No matter which solution approach you choose, a vision on the principal information objects is quintessential to the success of individual BI projects. 

From Information Objects to BI Architecture

Thinking about information objects like customer, channel, product, location, is thinking about the way they are created, stored, updated and deleted in the various information systems of the organisation. It also relates to the business processes using these information objects to produce context for transaction registrations like information request, complaint, order, payment etc..
Thus, answering the what, where, why and how questions as the Zachman Framework does is talking architecture. The illustration below is a classical BI situation. With the advent of complex event processing and big data technology on Hadoop, things are changing but for 99% of the organisations, classical BI is still the modus operandi.




Figure 1 A generic architecture of contemporary information systems: transaction systems and decision support systems are separated systems where information objects pass from the transaction systems to the decision support systems via an Extract Transform and Load Process.

Some comments with the above schema in Archimate modelling language:
Business drivers such as “end to end support for the order to pay process” define various business processes which in turn are supported by transaction registration systems. These systems create transaction lines like order, order confirmation, bill of material, manufacturing data, shipping bill, delivery note, customer receipt registration, invoice,  customer payment registration etc…
All these transactions relate to information objects like date and time, product, customer, shipment mode, etc..
Via the Extract Transform and Load process these objects are scrubbed, normalised and made ready for publishing in analytical environments and reports. That’s when they become decisional data objects: facts and dimensions are always the end result, no matter what intermediate storage you use: a data vault, an anchor model or an enterprise data warehouse in the third normal form. The facts are the measures in the reports and the dimensions are the perspectives on these measures. Usually you read the facts per dimension, i.e. the sales per region, per outlet, per account manager,…
In data mining projects the facts and dimensions will be flattened in a matrix for offline analysis and combined with semi structured and unstructured data in Hadoop files systems. In streaming analytics temporary snapshots are compared with the scoring model which is derived from the facts and dimensions as well as semi structured and unstructured data in Hadoop file systems.
With new Big Data technologies, new architectures will emerge but that is for another post.
Suffice it to conclude that managing enterprise wide facts and dimensions as well as semi structured and unstructured data is both the task of programme management and BI architecture.

BI Architecture and Programme Management: See the Picture

Programme managers need to see the entire picture to set priorities, look for synergy between projects and initiate data management projects to fill the gaps between the BI projects as required by the business.  An example can make this clear.
Let’s take the first example from table 1: “Improving Customer Knowledge” driving a programme to consolidate all static and dynamic information about customers and their behaviour.
Conferring with the enterprise architecture board, the programme manager discovers that the geographical coordinates of each customer are valuable information for the logistics department to optimise delivery schedules. Though it is outside the scope of marketing, the programme manager will initiate a project to add geolocation data to the customer dimension. Later in the process, the marketing manager discovers the potential of geomarketing.
Of course, the interaction can also work the other way around: the BI architecture review board evaluates programmes and projects and readjusts priorities and project scope on the basis of availability and cost of data capture. Sometimes the replacement or adjustment of a source system can impact the BI programme heavily. It always boils down to defining a business case that sticks. Excuse me for hitting the nail over and over but it all starts with business analysis for business intelligence that sets the scene. Too many projects and programmes have failed in BI because of a gung ho approach of the designers and builders who cannot wait till the specs are thought through after thorough analysis of the strategy process and the data landscape.