vrijdag 1 maart 2019

About Ends and Means, or Beginning and Ends...


It has been a while since I published anything on this blog. But after having been confronted with organisations that –from an analytics point of view- live in the pre-industrial era, I need to get a few things off my chest.
In these organisations (and they aren’t the smallest ones)  ends and means are mixed up, and ends are positioned as the beginning of Business Intelligence. Let me explain the situation.

Ends are the beginning



sea ice
A metaphor for a critical look at reporting requirements is like watching heavy drift ice 
and wondering whether it’s coming from a land based glacier or from an iceberg...

Business users formulate their requirements in terms of reports. That’s OK, as long as someone, an analyst, an architect or even a data modeller understands this is not the end of the matter, on the contrary.
Yet too many information silos have been created when this rule is ignored. If an organisation considers report requirements as the start of a BI project they are skipping at least the following questions and the steps needed to produce a meaningful analytics landscape that can stand the test of time:

  • New information silos emerge with an end-to-end infrastructure to answer a few specific business questions leaving opportunities for a richer information centre unexplored.
  • The cost per report becomes prohibitive. Unless you think € 60.000 to create one (1) report is a cinch…
  • Since the same data elements run the risk of being used in various data base schemas, the extract and load processes pay a daily price in terms of performance and processing cost.

Ends and means are mixed up


A report is the result of an analytical process, combining data for activities like variance analysis, trend analysis, optimisation exercises, etc.. As such it is a means to support decision making; so rather than accepting the report requirements as such, some reverse engineering is advised:

What are the decisions to be made for the various managerial levels, based on these report requirements?

You  may wonder why this obvious question needs to be asked but be advised, some reports are the equivalent of a news report. The requestor might just want to know about what happens without ever drawing any conclusions let alone linking any consequences to the data presented.

What are the control points needed by the controller to verify aspects of the operations and their link to financial results?

Asking this question almost always leads to extending the scope of the requirements. Controllers like to match data from various sources to make sure the financial reports reflect the actual situation.

What are the future options, potential requirements and / or possibilities of the required enhanced with the available data in the sources?

This exercise is needed to discover analytical opportunities which may not be taken at the moment for a number of reasons like: insufficient historical data, lacking analytical skills to come up with meaningful results… But that must not stop the design from taking the data in scope from the start. Adding the data in a later stage will come at a far greater cost than the cost of the scope extension.

What is the basic information infrastructure to facilitate the above? I.e. what is the target model?

A Star schema is the ideal communication platform between business and tech people.
Whatever modelling language you use, whatever technology you use (virtualisation, in memory analytics, appliances, etc…) in the end the front end tool will build a star schema. So take the time to build a logical data star schema model that  can be understood by both technical people and business managers.

What is the latency and the history needed per decision making horizon?

The latency question deals with a multitude of aspects and can take you to places you weren’t expecting when you were briefed about report requirements. As a project manager I’d advise you to handle with care as the scope may become unmanageable. Stuff like (near) real-time analytics, in database analytics, triple store extensions to the data warehouse, complex event processing mixing textual information with numerical measures… But as an analyst I’d advise you to be aware of the potentially new horizons to explore.
The history question is more straightforward and deals with the scope of the initial load. The slower the business cycle, the more history you need to load to come up with useful data sets for time series analysis.

What data do we present via which interface to support these various decision types?

This question begs a separate article but for now, a few examples should make things clear.
Static reports for external stakeholders who require information for legal purposes,
  • Reports using prompts and filters for team leaders who need to explore the data within predetermined boundaries,
  • OLAP cubes for managers who want to explore the data in detail and get new insights,
  • A dashboard for C- level executives who want the right cockpit information to run the business,
  • Data exploration results from data mining efforts to produce valid, new and potentially useful insights in running the business.

If all these questions are answered adequately, we can start the data requirements collection as well as the source to target mappings.



Three causes, hard to eradicate


If your organisation shows one or more of these three causes, you have a massive change management challenge ahead that will take more than a few project initiation documents to remedy. If you don’t get full support from top management, you’d better choose between accepting this situation and become an Analytics Sisyphus or look for another job.

Project based funding

Government agencies may use the excuse that there is no other way but moving from tender to tender, the French proverb “les excuses sont faites pour s’en servir” [1] applies. A solid data and information architecture, linked to the required capabilities and serving the strategic objectives of a government agency can provide direction to these various projects.
A top performing European retailer had a data warehouse with 1.500 tables, of which eight (8!) different time dimensions. The reason? Simple: every BU manager had sovereign rule over his information budget and “did it his way” to quote Frank Sinatra.

Hierarchical organisations

I already mentioned the study of Prof. Karin Moser introducing three preconditions for knowledge co-operation: reciprocity, a long term perspective for the employees and the organisation and breaking the hierarchical barriers. [2]
On the same pages I quote the authors Leliveld & Vink and Davos & Newstrom who support the idea that knowledge exchange based on reciprocity can only take place in organisational forms that present the whole picture to their employees and that keep the distance between co-workers and the company’s vision, objectives, customers etc. as small as possible.
Hierarchical organisations are more about power plays and job protection than knowledge sharing so the idea of having one shared data platform for everyone in the organisation to extract his own analyses and insights is an absolute horror scenario.

Process based support

Less visible but just as impactful, if IT systems are designed primarily for process support instead of attending as well to the other side of the coin, i.e. decision support, then you have a serious structural problem. Unlocking value from the data may be a lengthy and costly process. Maybe you will find some inspiration in a previous article on this blog: Design from the Data.
In short: processes are variable and need to be flexible, what lasts is the data. Information objects like a customer, an invoice, an order, a shipment, a region etc… are far more persistent than the processes that create or consume instances of these objects.




 [1]    Excuses are made to be used
 [2]    Business Analysis for Business Intelligence pp. 35 -38 CRC Books, a Taylor & Francis Company October 2012






4 opmerkingen:

  1. Makes a lot of sense. Architecting a BI environment is a must to provide a solid base for analysis and reporting.

    BeantwoordenVerwijderen
    Reacties
    1. This is a very recognizable scene and I'm still surprised that in this day and age these "chicken or egg" discussions still need to take place. While we keep getting spammed by the dogmas of big data and AI, most to many organizations are nearly or not even in their puberty when it comes down to any kind of business analytics maturity level. Currently working on a Pan-European HR analytics solution, I decided to "go Agile" all the way so that we can welcome future requirements as flexible and seamless as possible. Not exactly a picnic to sell a rapid prototype development approach to management but there is a reason why solution management has become a true profession.

      Verwijderen
  2. I still come across marts “Inmon style” with aggregated data to answer business questions that have outlived their “best before” date. If you have to go back to the enterprise data warehouse to produce new, aggregated data marts, the synergy is close to zero.

    BeantwoordenVerwijderen
    Reacties
    1. Tell me about it sir. In my current position, even in a team of senior data architects (external consultants) I regularly need to explain the cost/benefit use case of an Atomic Warehouse Model. While people recite about AI in the boardroom, the workplace has the greatest challenge to even implement the basics. Well okay, "think big, start small", I know. But anno 2019 really?

      Verwijderen